
VLSI Design Adders and Multipliers

© 2011 by Gerald E. Sobelman 61

(3, 2) Counter
• An (m, n) counter takes as input m bits (all of the same power-of-2 weight) and

produces an n-bit binary number whose value is the number of inputs that are
equal to 1. In other words, it counts the number of 1s in the input and outputs
the binary count value. The outputs of the counter have different power-of-2
weights. The weight of the LSB of the counter output is the same as the weight
of each of the inputs, and the remaining bits have increasingly higher weights.

• The simplest and most widely used example is the (3, 2) counter. Of the 3
inputs, there can be either 0, 1, 2 or 3 inputs equal to 1. All four of these
values can be represented as a 2-bit binary number. In fact, the (3, 2) counter
is nothing but a full adder, where the sum is the LSB count output and the
carry-out is the MSB count output:

(3, 2) counter
(full adder)

X Y Z

SCout

weight = 2n

weight = 2nweight = 2n+1

VLSI Design Adders and Multipliers

© 2011 by Gerald E. Sobelman 62

Carry-Save Adder
• In a multiplier, we have to add many partial products together in order to obtain

the final product. We could just successively accumulate partial products using
a cascade of standard high-speed adders in which we have a carry propagation.
We refer to such adders as carry propagate adders (CPAs). However, this
would be very slow due to the carry propagation delay in each CPA.

• A much better alternative is to successively reduce 3 input vectors to 2 output
vectors, i.e. a sum vector and a carry vector. Each bit of these two vectors are
computed independently of all other bits and there is no carry propagation
between adjacent bit positions. The hardware does compression from 3 vectors
X, Y and Z down to 2 vectors S and C is called a carry-save adder (CSA). It is
composed of a parallel set of (3, 2) counters, i.e. a parallel set of full adders.

(3, 2) counter
(full adder)

S0C1

(3, 2) counter
(full adder)

(3, 2) counter
(full adder)

(3, 2) counter
(full adder)

…

X0 Y0 Z0X1 Y1 Z1Xn-2Yn-2Zn-2Xn-1Yn-1Zn-1

C2Cn-1Cn S1Sn-2Sn-1 Cn-2

VLSI Design Adders and Multipliers

© 2011 by Gerald E. Sobelman 63

From CSAs to Wallace Trees
• When there are a large number of vectors to be compressed to 2 final vectors,

we need many CSAs. They should be organized in a way that minimizes the
delay (i.e., number of levels of CSA) and/or the number of CSAs required.

• An n-bit CSA can be conveniently denoted as follows:

Ref: Vojin G. Oklobdzija, David Villeger and Simon S. Liu, “A Method for Speed Optimized Partial Product
Reduction and Generation of Fast Parallel Multipliers Using an Algorithmic Approach,” IEEE Trans.
Computers, Vol. 45, No. 3, pp. 294-306, March, 1996.

Ref: P. Song and G. De Micheli, “Circuit and Architecture Trade-Offs for High Speed Multiplication,” IEEE Journal
of Solid-State Circuits, Vol. 26, No. 9, pp. 1184-1198, Sept., 1991.

n-bit CSA

X Y Z

C S

= FA

Xn-1 Yn-1 Zn-1

sumcarry-out

Cn Sn-1

… FA

X0 Y0 Z0

sumcarry-out

C1 S0

VLSI Design Adders and Multipliers

© 2011 by Gerald E. Sobelman 64

Wallace Tree Example

• For example, consider compressing 6 partial products P0, P1, … P5 to 2 vectors S
and C. This can be done using 3 levels of CSAs.

• The left arrow on some CSA inputs means
that that vector is shifted left by one bit
position to account for the fact that it
is a carry vector output of a prior CSA.

• This technique can be readily extended
to a larger number of initial vectors.
For example, we can compress 9
vectors to 2 using 4 levels of CSAs:
level 1: 9 = 3 + 3 + 3 => 2 + 2 + 2 = 6
level 2: 6 = 3 + 3 => 2 + 2 = 4
level 3: 4 = 3 + 1 => 2 + 1 = 3
level 4: 3 => 2

CSA

P5 P4 P3

CSA

P2 P1 P0

CSA

CSA

SC

VLSI Design Adders and Multipliers

Wallace Tree Verilog Code: Part 1 of 2
module full_adder(a, b, cin, s, cout);

input a, b, cin;
output s, cout;

assign s = a^b^cin;
assign cout = (a&b) | (b&cin) | (a&cin);

endmodule

// 8-bit carry-save adder
module csa(x, y, z, s, c);

input [7:0] x, y, z;
output [7:0] s;
output [8:1] c;

full_adder fa0(x[0], y[0], z[0], s[0], c[1]);
full_adder fa1(x[1], y[1], z[1], s[1], c[2]);
full_adder fa2(x[2], y[2], z[2], s[2], c[3]);
full_adder fa3(x[3], y[3], z[3], s[3], c[4]);
full_adder fa4(x[4], y[4], z[4], s[4], c[5]);
full_adder fa5(x[5], y[5], z[5], s[5], c[6]);
full_adder fa6(x[6], y[6], z[6], s[6], c[7]);
full_adder fa7(x[7], y[7], z[7], s[7], c[8]);

endmodule

© 2011 by Gerald E. Sobelman 65

VLSI Design Adders and Multipliers

Wallace Tree Verilog Code: Part 2 of 2
// 6-input Wallace tree
module wallace(p0, p1, p2, p3, p4, p5, s, c);

input [7:0] p0, p1, p2, p3, p4, p5;
output [8:0] s;
output [9:1] c;

wire [7:0] s1, s2, s3, s4;
wire [8:1] c1, c2, c3, c4;

csa csa1(p2, p1, p0, s1, c1);
csa csa2(p5, p4, p3, s2, c2);
csa csa3(s2, {c1[7:1], 1'b0}, s1, s3, c3);
csa csa4({c2[7:1], 1'b0}, {c3[7:1], 1'b0}, s3, s4, c4);
full_adder fa1(c1[8], c2[8], c3[8], s_msb, c_msb);
assign s = {s_msb, s4};
assign c = {c_msb, c4};

endmodule

© 2011 by Gerald E. Sobelman 66

VLSI Design Adders and Multipliers

Wallace Tree Testbench Code
module tb1wallace; // random unsigned inputs, decimal values including a check

reg [7:0] p0, p1, p2, p3, p4, p5; // 8-bit inputs (to be chosen randomly)
wire [8:0] s; // 9-bit sum output
wire [9:1] c; // 9-bit carry output
reg [10:0] sval, check; // 11-bit final sum and check values

// instantiate the 6-input Wallace tree
wallace wallace1(p0, p1, p2, p3, p4, p5, s, c);

// simulation of 50 random addition operations
initial repeat (50) begin

// get new operand values and compute a check value
p0 = $random; p1 = $random; p2 = $random;
p3 = $random; p4 = $random; p5 = $random;
check = p0 + p1 + p2 + p3 + p4 + p5;

// compute and display the final sum value every 10 time units
#10 sval = s + (2*c);
$display($time, " %d + %d + %d + %d + %d + %d = %d (%d)",

p0, p1, p2, p3, p4, p5, sval, check);
end

endmodule

© 2011 by Gerald E. Sobelman 67

VLSI Design Adders and Multipliers

Wallace Tree Testbench Results
• A portion of the output produced is as follows:

10 36 + 129 + 9 + 99 + 13 + 141 = 427 (427)
20 101 + 18 + 1 + 13 + 118 + 61 = 312 (312)
30 237 + 140 + 249 + 198 + 197 + 170 = 1191 (1191)
40 229 + 119 + 18 + 143 + 242 + 206 = 957 (957)
50 232 + 197 + 92 + 189 + 45 + 101 = 856 (856)
60 99 + 10 + 128 + 32 + 170 + 157 = 596 (596)
70 150 + 19 + 13 + 83 + 107 + 213 = 585 (585)
80 2 + 174 + 29 + 207 + 35 + 10 = 457 (457)
90 202 + 60 + 242 + 138 + 65 + 216 = 923 (923)
100 120 + 137 + 235 + 182 + 198 + 174 = 1046 (1046)

...

© 2011 by Gerald E. Sobelman 68

