VLSI Design Adders and Multipliers

(3, 2) Counter

e An (m, n) counter takes as input m bits (all of the same power-of-2 weight) and
produces an n-bit binary number whose value is the number of inputs that are
equal to 1. In other words, it counts the number of 1s in the input and outputs
the binary count value. The outputs of the counter have different power-of-2
weights. The weight of the LSB of the counter output is the same as the weight
of each of the inputs, and the remaining bits have increasingly higher weights.

e The simplest and most widely used example is the (3, 2) counter. Of the 3
inputs, there can be either 0, 1, 2 or 3 inputs equal to 1. All four of these
values can be represented as a 2-bit binary number. In fact, the (3, 2) counter
Is nothing but a full adder, where the sum is the LSB count output and the
carry-out is the MSB count output:

S 7 weight = 2"
X Y Z

L1

(3, 2) counter
(full adder)

Lo

weight =2"! ———> C_, S <—— weight=2"
© 2011 by Gerald E. Sobelman 61

VLSI Design Adders and Multipliers

Cy

Carry-Save Adder

In a multiplier, we have to add many partial products together in order to obtain
the final product. We could just successively accumulate partial products using
a cascade of standard high-speed adders in which we have a carry propagation.
We refer to such adders as carry propagate adders (CPAs). However, this
would be very slow due to the carry propagation delay in each CPA.

A much better alternative is to successively reduce 3 input vectors to 2 output
vectors, i.e. a sum vector and a carry vector. Each bit of these two vectors are
computed independently of all other bits and there is no carry propagation
between adjacent bit positions. The hardware does compression from 3 vectors
X, Y and Z down to 2 vectors S and C is called a carry-save adder (CSA). Itis
composed of a parallel set of (3, 2) counters, i.e. a parallel set of full adders.

an-lYln-lfn-l an-ZYln-ZTn-Z >l(1 Tl Tl TO TO TO
(3, 2) counter (3, 2) counter (3, 2) counter (3, 2) counter
(full adder) (full adder) (full adder) (full adder)

n-1 n-1 n 1 Cl S0

© 2011 by Gerald E. Sobelman 62

VLSI Design Adders and Multipliers

From CSAs to Wallace Trees

When there are a large number of vectors to be compressed to 2 final vectors,
we need many CSAs. They should be organized in a way that minimizes the
delay (i.e., number of levels of CSA) and/or the number of CSAs required.

e An n-bit CSA can be conveniently denoted as follows:

j{(1 i Xn-l Yn-1 Zn-l XO YO ZO
] [
: _ FA FA
n’j;'t CjA - carry|—out su|m carry|—out su|m
C S Cn Sn-l Cl SO

Ref: Vojin G. Oklobdzija, David Villeger and Simon S. Liu, “A Method for Speed Optimized Partial Product

Reduction and Generation of Fast Parallel Multipliers Using an Algorithmic Approach,” /EEE Trans.
Computers, Vol. 45, No. 3, pp. 294-306, March, 1996.

Ref: P. Song and G. De Micheli, “Circuit and Architecture Trade-Offs for High Speed Multiplication,” /EEE Journal
of Solid-State Circuits, Vol. 26, No. 9, pp. 1184-1198, Sept., 1991.

© 2011 by Gerald E. Sobelman 63

VLSI Design Adders and Multipliers

Wallace Tree Example

» For example, consider compressing 6 partial products P,, P,, ... Ps to 2 vectors S
and C. This can be done using 3 levels of CSAs.

e The left arrow on some CSA inputs means
that that vector is shifted left by one bit
position to account for the fact that it Fl)5 Fl)“ Fl)3 Fl)z Fl)l Po
IS a carry vector output of a prior CSA.

e This technique can be readily extended CSA CSA
to a larger number of initial vectors. |
For example, we can compress 9 -
vectors to 2 using 4 levels of CSAs: S
level 1: 9 =3 +3+3=>2+2+2=6 CSA
level 2: 6 =3+3=>2+2=4
level 3:4=3+1=>2+1=3 «—
level 4: 3 => 2

© 2011 by Gerald E. Sobelman 64

VLSI Design

Adders and Multipliers

Wallace Tree Verilog Code: Part 1 of 2

module full_adder(a, b, cin, s, cout);

input a, b, cin;
output s, cout;

assign s = a”™b”cin;

assign cout = (a&b) | (b&cin) | (a&cin);

endmodule

// 8-bit carry-save adder

module csa(x, y, z, S, C);

input [7:0] X, vy, z;

output [7:0] s;
output [8:1] c;

full_adder faO(x[0],
full_adder fal(x[1],
full_adder fa2(x[2],
full_adder fa3(x[3],
full_adder fad4(x[4],
full_adder fa5(x[5],
full_adder fa6(x[6],
full_adder fa7(x[7],

endmodule

y[0],
EN P
y[2]1,
y[31,
y[4]1,
y[51,
y[€él,
yL71,

z[0],
z[1],
z[2],
z[3],
z[4],
z[5],
z[6],
z[7],

s[0],
s[1],
s[2],
s[31],
s[4],
s[5],
s[é],
s[7]1,

© 2011 by Gerald E. Sobelman

c[1D:
cl2D:
c[3D:
cl4D:
c[5D:
c[6D:
cl7D:
cl8D:

65

VLSI Design

Adders and Multipliers

Wallace Tree Verilog Code: Part 2 of 2

// 6-input Wallace tree

module wallace(pO, pl, p2, p3, p4, p5, S, C);

input [7:0] pO, pl, p2, p3, p4, p5;

output [8:0] s;
output [9:1] c;

wire [7:0] s1,
wire [8:1] c1,

csa csal(p2, pl,
csa csa2(p5, p4,
csa csa3(s2, {clf7:1], 1°b0}, s1, s3, c3);

s2,
c2,

PO,
p3,

s3,
c3,

sl,
s2,

s4;
c4;

cl);
c2);

csa csa4({c2[7:1], 1"b0}, {c3[7:1], 1"b0}, s3, s4, c4);

full_adder fal(cl|[8], c2[8], c3[8], s msb, c msb);

assign s = {s_msb, s4};
assign ¢ = {c_msb, c4};

endmodule

© 2011 by Gerald E. Sobelman

66

VLSI Design Adders and Multipliers
Wallace Tree Testbench Code

module tblwallace; // random unsigned inputs, decimal values including a check

reg [7:0] pO, pl, p2, p3, p4, p5; // 8-bit inputs (to be chosen randomly)

wire [8:0] s; // 9-bit sum output
wire [9:1] c; // 9-bit carry output
reg [10:0] sval, check; // 11-bit final sum and check values

// instantiate the 6-input Wallace tree
wallace wallacel(pO, pl, p2, p3, p4, p5, S, C);

// simulation of 50 random addition operations
initial repeat (50) begin
// get new operand values and compute a check value
pO = $random; pl = $random; p2 = $random;
p3 = $random; p4 = $random; p5 = $random;
check = p0 + pl + p2 + p3 + p4 + p5;

// compute and display the final sum value every 10 time units
#10 sval = s + (2*c);
$display($time, "™ %d + %d + %d + %d + %d + %d = %d (%d)",
pO, pl, p2, p3, p4, p5S, sval, check);
end

endmodule

© 2011 by Gerald E. Sobelman 67

VLSI Design

10
20
30
40
50
60
70
80
90
100

36
101
237
229
232

99
150

202
120

+ + + + 4+ + + + + +

Adders and Multipliers

Wallace Tree Testbench Results

e A portion of the output produced is as follows:

129
18
140
119
197
10
19
174
60
137

+ + 4+ + + + + + 4+ +

9
1
249

© B
N 0

128

|_\
w
+ + + + + + + + + +

N
©

242
235

= O
w ©

+ + + + + + + + + +

198
143
189

32

83
207
138
182

13
118
197
242

45
170
107

35

65
198

+ + + + 4+ + + + + +

141

61 =
170 =

206
101
157
213

10
216
174

427 (427)
312 (312)
1191 (1191)
957 (957)
856 (856)
506 (596)
585 (585)
457 (457)
923 (923)
1046 (1046)

© 2011 by Gerald E. Sobelman 68

