Pipeline Hazards

(Notes based on: Computer Architecture: A Quantitative Approach, 5th Edition, John L.
Hennessy and David A. Patterson, Morgan Kaufmann, 2012)

3 categories of hazards:

(i) Structural hazards: hardware resource conflicts, i.e. two different instructions
in the pipeline need the same resource during the same clock cycle. Example:
If a unified cache, then IF (always) needs an instruction and MEM may need a
data word.

(i) Data hazards: an instruction depends on the results of a previous instruction
that has not yet completed passing through the pipeline.

(ili) Control hazards: pipelining of branches and other instructions that change the
PC.

If a hazard occurs, then the pipeline is stalled. Instructions issued later than the stalled
Instruction are also stalled, but instructions issued before that continue their execution in
the pipeline. Thus, no new instructions are issued during the stall. A stall is also called
a pipeline bubble or just a bubble, since it “floats” through the pipeline taking up space
but performing no useful work.

Data hazard example: Consider the following sequence of instructions:
DADD R1, R2, R3
DSUB R4, R1, R5

AND R6, R1, R7
OR R8, R1, R9
XOR R10, R1, R11

The result of the DADD instruction goes into R1, but not until the WB stage. The next
4 instructions all use R1 as an operand. We need to make sure that they are using the
value computed by the DADD instruction, which is what the programmer intended.

Assume that the DADD instruction IF stage occurs in cycle 1. The DSUB and AND
instructions have a data hazard, because R1 is written in (the first half of) cycle 5, but is
read by DSUB in cycle 3 and by AND in cycle 4. The OR instruction does not have a
data hazard because it reads R1 during the second half of cycle 5, whereas the write to
R1 occurs in the first half of cycle 5. There is also no hazard for the XOR instruction,
which reads R1 in cycle 6.

The solution to the above data hazards is to use forwarding. The correct result for R1 is
in a pipeline register even if it has not yet been written back to the register file. So, just
make that pipeline register value be a possible ALU input by feeding it back to MUXs
present at the ALU inputs. (It may be needed as a “left input” or a “right input”).
Specifically:

1. The ALU result from both the EX/MEM and MEM/WB pipeline registers is fed
back to each of the ALU inputs.

2. If the forwarding logic detects a data hazard, the control logic selects the
forwarded value rather than the value read from the register file (which is the old
or “stale” value).

In the previous example, the value in EX/MEM is sent to an ALU input for DSUB. The
value in MEM/WB is sent to an ALU input for AND.

Data hazards requiring stalls: Not all data hazards can be eliminated by forwarding. For
example, in a load instruction, the value from data memory is available at the end of
MEM. If the next instruction uses that as an operand (which would be in its EX stage,
which would be at the same time as MEM of the load instruction), then this cannot be
accommodated. The only possibility is to stall the pipeline for one cycle. For example,
the following timing will not work:

LD R1, 0(R2) IF ID EX MEMWB

DSUB R4, R1, RS IF ID EX MEMWB

AND R6, R1, R7 IF ID EX MEMWB

OR R8, R1, R9 IF ID EX MEMWB

So, we have to stall the pipeline as follows:

LD R1, 0(R2) IF ID EX MEMWB
DSUB R4, R1, R5 IF ID stal EX MEMWB
AND R6, R1, R/ IF stall ID EX MEMWB

OR R8, R1, R9 stall IF ID EX MEMWB

Branch hazards: (a type of control hazard) If a branch is not taken, the PC is
incremented by 4. If the branch is taken, then the PC value is changed to the branch
target address. A condition is checked and the branch target address is computed in ID.
If the branch is taken, the PC is changed at the end of ID.

How do deal with branch hazards? Simplest method is to redo the fetch of the
instruction following the branch once we detect the branch in ID, which is when the
instructions are decoded.

-> one stall cycle for every branch (since IF is repeated once the branch outcome is
known), so not the most efficient procedure

Four methods to reduce branch penalties:

(i) Freeze or flush the pipeline — hold or delete any instructions after the branch
until the branch destination is known. Simple to implement, but not the best
performance. Gives a one-cycle penalty. The first IF in the branch successor
Is essentially a stall since it is not used. Note that in the case of the branch not
taken, the second IF will fetch the same instruction again.

Branch instr. IF ID EX MEMWB
Branch successor IF IF ID EXMEM WB (notethe 2nd IF)
Branch successor + 1 IF ID EX MEMWB

(i) Predicted-not-taken — Treat every branch as not taken, in other words, just
continue fetching instructions normally. However, we don’t want to change
the state of the processor until the branch outcome is known. In the case the
branch is taken, any changes caused by the misprediction must be undone.

We need to turn the fetched wrong instruction into a no-op and restart the
fetch at the target address.

(iii) Predicted-taken

(iv) Delayed branch — there is a “branch delay slot” following a branch instruction.
The instruction following the branch (in this delay slot) is always executed.
Then, the instruction after that is the one at the branch target if the branch is
taken. The compiler tries to put a useful instruction into the branch delay slot,
so that that cycle is not wasted.

Static branch prediction: Uses information available at compile time.

Branches are often highly biased towards either taken or untaken. In other words,
for a given branch instruction, it will mostly be either taken or untaken, rather than
roughly equal taken/untaken. (An example would be a branch used in a for-loop: it
Is always taken, except for the last iteration.)

Use profile information from earlier runs of the program to statically predict the
behavior of each branch instruction during compilation. This works particularly well
for floating-point benchmarks, and less well for integer benchmark programs.

Dynamic branch prediction: Uses information based on the run-time execution of the
program.

Can use a branch-prediction buffer (BTB) or a branch history table.

A BTB is a small memory indexed by the low-order bits of the address of the branch
instructions in a program. For a 1-bit predictor, the data stored at each memory
location is one bit that indicates if the branch was taken last time or not.

e Since we use only the low-order address bits (to keep the buffer size small),
we may be mixing up the recent history of different branch instructions — but it
doesn’t matter! We treat the bit as a hint that is assumed to be correct and
fetch the corresponding instruction. (So, if the hint is untaken, then we fetch
the next sequential instruction; if the hint is taken, then we fetch the
Instruction at the branch target address.)

o |f the prediction turns out to be wrong, the prediction bit is inverted and stored
back in the BTB. (i.e., we update our prediction based on this most recent
experience)

2-bit predictor: Usually has better performance than a 1-bit predictor, because it takes
two wrong predictions in a row before the prediction is changed. Better performance
for branches that strongly favor either taken or untaken, as in loops.

