
VLSI Design Adders and Multipliers

© 2011 by Gerald E. Sobelman 34

Baugh-Wooley Multiplier Design
• To illustrate the mathematical transformation which is required, consider 4-bit

signed operands X and Y and an 8-bit product P:

X ⇔ (x3, x2, x1, x0) , Y ⇔ (y3, y2, y1, y0) , P ⇔ (p7, p6, p5, p4 ,p3, p2, p1, p0)

• Because these are in two’s complement form, we can compute their numerical
values as:

• Also, since P = XY, we can write:

• Note that the first two terms are positive summands while the second two terms
are negative summands. However, instead of subtracting, we can add the two’s
complements of those two terms.

Y y y j
j

j= − +
=
∑3

3

0

2
2 2

P x x y y

x y x y x y x y

i
i

i
j

j

j

i
i j

j

i j
i

i

i

j
j

j

= − + − +

= + − −

= =

= =

+

=

+

=

+

∑ ∑

∑ ∑ ∑ ∑

()()3
3

0

2
3

3

0

2

3 3
6

0

2

0

2

3
0

2
3

3
0

2
3

2 2 2 2

2 2 2 2

P p pi
i

i= − +
=
∑7

7

0

6
2 2X x xi

i

i= − +
=
∑3

3

0

2
2 2

VLSI Design Adders and Multipliers

© 2011 by Gerald E. Sobelman 35

Baugh-Wooley Multiplier - Cont.
• Consider the summation in the 3rd term. We can add 2 zero terms that don’t

change it:

• Instead of subtracting this, we can add its two’s complement, which can be
computed as the one’s complement plus 1:

• There are two possible cases:
– If y3 = 0, this simplifies to:

– If y3 = 1, this simplifies to:

Ref: K. Hwang, Computer Arithmetic: Principles, Architecture and Design, John Wiley, 1979.

x y x yi
i

i
i

i

i
3

0

2
3 3 4 3

3
0

2
2 2 0 2 0 2 2

=

+

=
∑ ∑= − ⋅ + ⋅ +[]

2 1 2 1 2 2 13 4 3
3

0

2
[]− ⋅ + ⋅ + +

=
∑ x yi

i

i

2 2 2 1 2 2 2 1 1 03 3

0

2
3 3 3[] [()]− + + = − + − + =

=
∑ i

i

2 2 2 13 3

0

2
[]− + +

=
∑ xi

i

i

VLSI Design Adders and Multipliers

© 2011 by Gerald E. Sobelman 36

Baugh-Wooley Multiplier Design – Cont.
• These two sub-cases can be subsumed into the following single expression:

• We can check this as follows:
– For y3 = 0, this reduces to:

– For y3 = 1, this reduces to:

• By symmetry (i.e., by reversing the roles of the x and y terms), we can
immediately write down the corresponding expression for the two’s complement
of the 4th term as:

2 2 2 23 3
3 3

3
3

0

2
[]− + + +

=
∑y y x yi i

i

2 2 2 03 3 3[]− + =

2 2 1 23 3

0

2
[]− + +

=
∑ xi

i

i

2 2 2 23 3
3 3

3
3

0

2
[]− + + +

=
∑x x x y j

j

j

VLSI Design Adders and Multipliers

© 2011 by Gerald E. Sobelman 37

Baugh-Wooley Multiplier Design – Cont.
• Finally, replacing the negative summands by the addition of these two’s

complement forms in our original expression for P gives:

• Note that we can further simplify -26 - 26 = -27, which, in turn, corresponds to a
+1 in the 27 position because it is the MSB of an 8-bit two’s complement vector.

• As a result, the above set of terms corresponds to a set of positive terms to be
added using a set of half-adders and full-adders.

• The above mathematical transformations can be extended to an arbitrary
operand sizes, such as 16-bit by 16-bit multiplication or 32-bit by 32-bit
multiplication, etc.

P x y x y

y y x y

x x x y

i
i j

j

i j

i
i

i

j
j

j

= +

− + + +

− + + +

= =

+

=

+

=

+

∑ ∑

∑

∑

3 3
6

0

2

0

2

6
3

3
3

6
3

0

2
3

6
3

3
3

6
3

0

2
3

2 2

2 2 2 2

2 2 2 2

VLSI Design Adders and Multipliers

Baugh-Wooley Multiplier Design – Cont.

© 2011 by Gerald E. Sobelman 38

VLSI Design Adders and Multipliers

Verilog Code for the Baugh-Wooly Multiplier: Part 1 of 3
// half adder component used in the multiplier
module half_adder(a, b, s, cout);

input a, b;
output s, cout;

assign s = a^b;
assign cout = a&b;

endmodule

// full adder component used in the multiplier
module full_adder(a, b, cin, s, cout);

input a, b, cin;
output s, cout;

assign s = a^b^cin;
assign cout = (a&b) | (b&cin) | (a&cin);

endmodule

© 2011 by Gerald E. Sobelman 39

VLSI Design Adders and Multipliers

Verilog Code for the Baugh-Wooly Multiplier: Part 2 of 3
// 4-bit by 4-bit Baugh-Wooley signed multiplier
module mult4bw(x, y, p);

input [3:0] x, y;
output [7:0] p;

// constant logic-one value
supply1 one;

// internal nodes within the multiplier circuit
wire t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12,

t13, t14, t15, t16, t17, t18, t19, t20, t21, t22, t23;

© 2011 by Gerald E. Sobelman 40

VLSI Design Adders and Multipliers

Verilog Code for the Baugh-Wooly Multiplier: Part 3 of 3
// structural description of the multiplier circuit
assign p[0] = x[0]&y[0];
half_adder ha1(x[1]&y[0], x[0]&y[1], p[1], t1);
half_adder ha2(x[2]&y[0], x[1]&y[1], t2, t3);
full_adder fa1(t2, t1, x[0]&y[2], p[2], t4);
half_adder ha3(x[3]&~y[0], x[2]&y[1], t5, t6);
full_adder fa2(t5, t3, x[1]&y[2], t7, t8);
full_adder fa3(t7, t4, ~x[0]&y[3], t9, t10);
full_adder fa4(t9, x[3], y[3], p[3], t11);
full_adder fa5(x[3]&~y[1], t6, x[2]&y[2], t12, t13);
full_adder fa6(t12, t8, ~x[1]&y[3], t14, t15);
full_adder fa7(t14, t10, t11, p[4], t16);
full_adder fa8(x[3]&~y[2], t13, ~x[2]&y[3], t17, t18);
full_adder fa9(t17, t15, t16, p[5], t19);
full_adder fa10(~x[3], ~y[3], x[3]&y[3], t20, t21);
full_adder fa11(t20, t18, t19, p[6], t22);
full_adder fa12(one, t21, t22, p[7], t23);

endmodule

© 2011 by Gerald E. Sobelman 41

VLSI Design Adders and Multipliers

An Exhaustive Testbench for the B-W Multiplier: Part 1 of 3

module tb9; // testbench for the 4-bit by 4-bit Baugh-Wooley signed multiplier
// exhaustive checking of all 256 possible cases

reg [3:0] x, y; // 4-bit inputs (to be chosen randomly)
integer xval, yval; // numerical values of inputs x and y
wire [7:0] p; // 8-bit output of the multiplier circuit
integer pval; // numerical value of the product
integer check; // value used to check correctness
integer i, j; // loop variables
integer num_correct; // counter to keep track of the number correct
integer num_wrong; // counter to keep track of the number wrong

// instantiate the 4-bit by 4-bit Baugh-Wooley signed multiplier
mult4bw mult_instance(x, y, p);

// exhaustive simulation of all 256 possible cases
initial begin

// initialize the counter variables
num_correct = 0; num_wrong = 0;

© 2011 by Gerald E. Sobelman 42

VLSI Design Adders and Multipliers

An Exhaustive Testbench for the B-W Multiplier: Part 2 of 3
// loop through all possible cases and record the results
for (i = 0; i < 16; i = i + 1) begin
x = i;
xval = -x[3]*8 + x[2:0];
for (j = 0; j < 16; j = j + 1) begin

y = j;
yval = -y[3]*8 + y[2:0];

check = xval * yval;

// compute and check the product
#10 pval = -p[7]*128 + p[6:0];
if (pval == check)
num_correct = num_correct + 1;
else
num_wrong = num_wrong + 1;

// following line is commented out, but is useful for debugging
// $display($time, " %d * %d = %d (%d)", xval, yval, pval, check);

end
end

© 2011 by Gerald E. Sobelman 43

VLSI Design Adders and Multipliers

An Exhaustive Testbench for the B-W Multiplier: Part 3 of 3

// print the final counter values
$display("num_correct = %d, num_wrong = %d", num_correct,
num_wrong);

end

endmodule

• The output produced by this testbench is:

num_correct = 256, num_wrong = 0

© 2011 by Gerald E. Sobelman 44

