|EEE 754 Floating-Point Class Notes
|EEE 754 Single-Precision Format

» Single-precision numbers contain atotal of 32 bits, partitioned as follows:
— 1-bitsign, S
— 8-bit biased exponent, E (with abias of 127), in the range [0, 255].
— 23-bit fraction, F
» Single-precision normalized numbers have a biased exponent in the range [1, 254].
— Thevalue of anormalized number is: (-1)3(1.F) 25127
— The 24-bit quantity 1.F isthe significand, and isin therange[1, 2).

» Single-precision denormalized numbers have a biased exponent of 0 and a non-zero
fraction.

— Thevalue of adenormalized number is: (-1)3(0.F)21%6
— Thisallowsfor “graceful underflow” of very small magnitude numbers.

— Not all hardware supports denormalized numbers (since it adds complexity and
may be slower), and programmers may disable denormalized numbers to increase
Speed.

» Single-precision zeros have a biased exponent of 0 and a zero fraction.
* Single-precision infinities have a biased exponent of 255 and a zero fraction.

* Single-precision NANs (non-a-number) have a biased exponent of 255 and a hon-zero
fraction. (The value of the fraction can be used to pass information about an exception.)

© 2006 by Gerald E. Sobelman 1



|EEE 754 Floating-Point Class Notes
|EEE 754 Double-Precision Format

» Double-precision numbers contain atotal of 64 bits, partitioned as follows:
— 1-bitsign, S
— 11-bit biased exponent, E (with a bias of 1023), in the range [0, 2047].
— B52-bit fraction, F
» Double-precision normalized numbers have a biased exponent in the range [ 1, 2046].
— Thevalue of anormalized number is: (-1)3(1.F) 251023
— The53-hit quantity 1.F isthe significand, and isin therange[1, 2).

» Double-precision denormalized numbers have a biased exponent of 0 and a non-zero
fraction.

— Thevalue of adenormalized number is: (-1)5(0.F)2-1022
* Double-precision zeros have a biased exponent of 0 and a zero fraction.
» Double-precision infinities have a biased exponent of 2047 and a zero fraction.
» Double-precision NANs have a biased exponent of 2047 and a non-zero fraction.

© 2006 by Gerald E. Sobelman 2



|EEE 754 Floating-Point Class Notes

|EEE 754 Rounding Modes

* Round to Nearest Even (RNE):
— The default rounding mode that must be supported in any implementation.

— The"nearest even” avoids any rounding bias in the case where the original number
Is exactly mid-way between two representable numbers.

» Round toward Zero (RZ2):

— Simply truncation.
* Round toward Plus Infinity (RPI):

— Roundinthedirection of positiveinfinity.
» Round toward Minus Infinity (RMI):

— Round in the direction of negative infinity.

* Notethat RPl and RMI are used in interval arithmetic, in which areal number x is
represented by two floating-point numbers x,; and X, that bracket the number. (X, isthe
closest representable number that is less than or equal to x and X, is the closest
representable number that is greater than or equal to x). Arithmetic operations are then
done on intervals. For example to add real numbers x and y using interval arithmetic:

[X1, Xl + [Y1, Yol =[X1+ Y1, X+ Yol
where x; + y; is rounded toward -infinity and x, + Yy, is rounded toward +infinity.

© 2006 by Gerald E. Sobelman 3



|EEE 754 Floating-Point Class Notes

Exceptions

e Overtflow:

— Occursif the exponent of the result islarger than the maximum allowable value
(e.g., for double-precision, if the exponent is larger than 2046). The correct output
then depends on the rounding mode and the sign of the result:

« |f RNE: (sign)(infinity)
o If RZ: (sign)(max. representable number)
o If RPI: If sign =+, then +infinity; otherwise, -(max. representable number)
« |f RMI: If sign =+, then (max. representable number); otherwise, -infinity
 Underflow:
— Action depends on whether denormalized numbers are handled or not.
 Divideby O:
— If thedivisor is 0 and the dividend is non-zero and finite, output = (sign)(infinity)
e Invalid Operation:
— “werd” operations, such as (0)(infinity), 0/0, (+infinity) + (-infinity),
infinity/infinity, sgrt of a negative number, ... Callsatrap handler or returns NaN.
» Inexact Result:
— Sesaflagif theresult is not exact.

© 2006 by Gerald E. Sobelman 4



|EEE 754 Floating-Point Class Notes
Basic Sequential Floating-Point Add/Subtract Algorithm

» Given two signed operands and two possible opcodes (i.e., add and subtract):
— An effective addition will be performed in the following situations:
» Add opcode with operands having the same sign.
» Subtract opcode with operands having opposite signs.
— An effective subtraction will be performed in the following situations:
» Add opcode with operands having opposite signs.
 Subtract opcode with operands having the same sign.
* For normalized operands A and B, the basic sequential algorithm for A+B or A-B is:
— Alignment:
 |If the exponents of the two operands differ, determine which operand has the
smaller exponent. Right-shift the significand of the smaller operand by an

amount E, - E,, where E; isthe larger exponent and E, is the smaller
exponent. Change the exponent of the smaller operand to E,.

— Add/Subtract:

» From the signs and the opcode, determineif thisis an effective addition or
subtraction and perform the corresponding operation on the significands.

© 2006 by Gerald E. Sobelman 5



|EEE 754 Floating-Point Class Notes
Basic Seg. Floating-Point Add/Subtract Algorithm - Cont.

— Normalization:

« |If we performed an effective addition, then the significand of the result will
beintherange[1, 4). There are two sub-cases:

— Ifitisintherange[1, 2), then no normalization is required.

— Ifitisintherange[2, 4), then we must perform aright shift by one bit
position, and increment the value of the exponent by one. Overflow may
occur.

» For an effective subtraction (and assuming that the aligned was subtracted
from the unaligned), then the result significand be in the range (-1, 2):

— Ifitisintherange[1, 2), then no normalization is required.

— Ifitisintherange (-1, 1), then we must perform aleft shift by one or
more bit positions, and decrement the value of the exponent by the
amount of the shift. Underflow may occur.

— Rounding/Negation:
* Round theresult and, if necessary, negate the significand and update the sign.
— Renormalization:

 Inrare cases, rounding will produce aresult which isno longer normalized. In
such cases, another 1-bit shift must be performed (and the exponent adjusted).

© 2006 by Gerald E. Sobelman 6



|EEE 754 Floating-Point Class Notes
Block Diagram for Basic Seq. Floating-Point Add/Subtract

» Thebasic sequential algorithm can be mapped onto sign, exponent and significand data
paths, as shown below. (Note that not all required connections are indicated explicitly.)

| |
Unpack
Subtract Exponents ——| Conditional Complement/Swap
Opcode| Sign [ > Align
Unlt «—— Y Y
Significand Adder
Exponent Adjust |« Normalize
Round/Negate
Exponent Adjust |« Renormalize
Pack
;

© 2006 by Gerald E. Sobelman 7



|EEE 754 Floating-Point Class Notes

Basic Floating-Point Multiply Algorithm

» Thethree main sub-operations are:
— Multiply the significands
— Add the biased exponents and subtract the bias (since each of the two operand
exponents contains one copy of the bias)
— XORthesigns

We must also perform normalization and rounding, with corresponding adjustments to
the biased exponent:

— If the significand of each operand is normalized, then each one will be in the range
[1, 2). Therefore, the product significand will bein therange[1, 4):

» If the product isintherange[1, 2), then it is already normalized.

 If the product isin therange[2, 4), then we must shift right by one bit position
and increment the exponent by 1.

» For normalized single precision operands, biased exponent are in the range [1, 254], so
the sum will bein the range [2, 508]. After subtracting the bias, itisin[-125, 381]:

— A final exponent < 1 means that the result is too small to be a normalized number.

— A final exponent > 254 means that the result is too large to be a normalized
number.

© 2006 by Gerald E. Sobelman 8



|EEE 754 Floating-Point Class Notes
Subtraction of Bias: IEEE Single-Precision Format

» The bias subtraction does not require a full-width operation because of its special value.
 Notethat -127 =1 - 128, soinstead of subtracting 127, we can add 1 and subtract 128.

— The"add 1” isdone as acarry-in to the LSB when the two biased exponents are
initially added, creating an unsigned 9-bit number in [3, 509]:
& % & CH % & & )
b, be bs by bs b, by bo
+ 1
€ €& € & € & & e &
— The“subtract 128" (where 128 = 27) can be done as follows: Prepend a0 MSB,
creating a 10-bit two’ s complement number, and add -128 as follows:

0 s € s S €4 €3 7. Sil €
+ 1 1 1 0 0 0 0 0 0 0

y X & €6 €5 €4 € € € €
Note that this only requires a 3-bit addition. The sum will bein[-125, 381], whichis
contained within the range of a 10-bit two's complement number i.e., [-512, 511].
« After any adjustments from normalization and rounding, if x =y = 0 (and the remaining
bitsare not all Os or all 1s) the resulting exponent is proper for a normalized number.
On the other hand, y = 1 indicates underflow, whiley = 0 and x = 1 indicates overflow.

© 2006 by Gerald E. Sobelman 9



|EEE 754 Floating-Point Class Notes
Subtraction of Bias: |IEEE Double-Precision Format

* For normalized numbers in double-precision format, the bias is 1023 and the biased
exponents are 11-bit unsigned quantitiesin the range [1, 2046].

 Notethat -1023 = 1 - 1024, so we can add 1 and subtract 1024:

— The“add 1" can be done as a carry-in to the LSB when the two biased exponents
areinitially added (creating an unsigned 12-bit number in [3, 4093]:
80 % & ¥ W HJ A @ & A &
blO b9 b8 b? b6 b5 b4 b3 b2 bl bO
+ 1
en €o & €& €& €& 6 € €& €& e &
— The“subtract 1024” (where 1024= 21°) can be done as follows: Prepend a0 M SB,
creating a 13-bit two’s complement number, and add -1024 as follows:

0 €11 €10 €9 €s €7 €6 €5 €4 €3 €2 €1 €o
+ 1 1 1 0 0 0 0 0 0 0 0 0 0
y X €9 € € € € €6 € € € € €

e Thisdtill only requires a 3-bit addition. Thesum isin [-1021, 3069], which iswithin the
range of a 13-bit two's complement number, i.e. [-4096, 4095]. After any adjustments
from normalization and rounding, if x =y = 0 (and the remaining bits are not all Os or all
1s), then the resulting exponent is proper for a normalized number. Otherwise, y =1
indicates underflow, whiley = 0 and x = 1 indicates overflow.

© 2006 by Gerald E. Sobelman 10



| EEE 754 Floating-Point

Basic Structure of the Data Path
The data path is split into sign, exponent and significand data paths as shown below.

Class Notes

© 2006 by Gerald E. Sobelman

| |
Unpack

XOR | | Add Exponents and Multiply Significands
signs Subtract Bias

Exponent Adjust |« Normalize

Round
Exponent Adjust |« Renormalize
Pack
!

11



