
© 2006 by Gerald E. Sobelman 1

IEEE 754 Floating-Point Class Notes

IEEE 754 Single-Precision Format
• Single-precision numbers contain a total of 32 bits, partitioned as follows:

– 1-bit sign, S
– 8-bit biased exponent, E (with a bias of 127), in the range [0, 255].
– 23-bit fraction, F

• Single-precision normalized numbers have a biased exponent in the range [1, 254].
– The value of a normalized number is: (-1)S(1.F)2E-127

– The 24-bit quantity 1.F is the significand, and is in the range [1, 2).
• Single-precision denormalized numbers have a biased exponent of 0 and a non-zero

fraction.
– The value of a denormalized number is: (-1)S(0.F)2-126

– This allows for “graceful underflow” of very small magnitude numbers.
– Not all hardware supports denormalized numbers (since it adds complexity and

may be slower), and programmers may disable denormalized numbers to increase
speed.

• Single-precision zeros have a biased exponent of 0 and a zero fraction.
• Single-precision infinities have a biased exponent of 255 and a zero fraction.
• Single-precision NANs (non-a-number) have a biased exponent of 255 and a non-zero

fraction. (The value of the fraction can be used to pass information about an exception.)

© 2006 by Gerald E. Sobelman 2

IEEE 754 Floating-Point Class Notes

IEEE 754 Double-Precision Format
• Double-precision numbers contain a total of 64 bits, partitioned as follows:

– 1-bit sign, S
– 11-bit biased exponent, E (with a bias of 1023), in the range [0, 2047].
– 52-bit fraction, F

• Double-precision normalized numbers have a biased exponent in the range [1, 2046].
– The value of a normalized number is: (-1)S(1.F)2E-1023

– The 53-bit quantity 1.F is the significand, and is in the range [1, 2).
• Double-precision denormalized numbers have a biased exponent of 0 and a non-zero

fraction.
– The value of a denormalized number is: (-1)S(0.F)2-1022

• Double-precision zeros have a biased exponent of 0 and a zero fraction.
• Double-precision infinities have a biased exponent of 2047 and a zero fraction.
• Double-precision NANs have a biased exponent of 2047 and a non-zero fraction.

© 2006 by Gerald E. Sobelman 3

IEEE 754 Floating-Point Class Notes

IEEE 754 Rounding Modes
• Round to Nearest Even (RNE):

– The default rounding mode that must be supported in any implementation.
– The “nearest even” avoids any rounding bias in the case where the original number

is exactly mid-way between two representable numbers.
• Round toward Zero (RZ):

– Simply truncation.
• Round toward Plus Infinity (RPI):

– Round in the direction of positive infinity.
• Round toward Minus Infinity (RMI):

– Round in the direction of negative infinity.
• Note that RPI and RMI are used in interval arithmetic, in which a real number x is

represented by two floating-point numbers x1 and x2 that bracket the number. (x1 is the
closest representable number that is less than or equal to x and x2 is the closest
representable number that is greater than or equal to x). Arithmetic operations are then
done on intervals. For example to add real numbers x and y using interval arithmetic:

[x1, x2] + [y1, y2] = [x1 + y1, x2 + y2]
where x1 + y1 is rounded toward -infinity and x2 + y2 is rounded toward +infinity.

© 2006 by Gerald E. Sobelman 4

IEEE 754 Floating-Point Class Notes

Exceptions
• Overflow:

– Occurs if the exponent of the result is larger than the maximum allowable value
(e.g., for double-precision, if the exponent is larger than 2046). The correct output
then depends on the rounding mode and the sign of the result:

• If RNE: (sign)(infinity)
• If RZ: (sign)(max. representable number)
• If RPI: If sign = +, then +infinity; otherwise, -(max. representable number)
• If RMI: If sign = +, then (max. representable number); otherwise, -infinity

• Underflow:
– Action depends on whether denormalized numbers are handled or not.

• Divide by 0:
– If the divisor is 0 and the dividend is non-zero and finite, output = (sign)(infinity)

• Invalid Operation:
– “weird” operations, such as (0)(infinity), 0/0, (+infinity) + (-infinity),

infinity/infinity, sqrt of a negative number, … Calls a trap handler or returns NaN.
• Inexact Result:

– Sets a flag if the result is not exact.

© 2006 by Gerald E. Sobelman 5

IEEE 754 Floating-Point Class Notes

Basic Sequential Floating-Point Add/Subtract Algorithm
• Given two signed operands and two possible opcodes (i.e., add and subtract):

– An effective addition will be performed in the following situations:
• Add opcode with operands having the same sign.
• Subtract opcode with operands having opposite signs.

– An effective subtraction will be performed in the following situations:
• Add opcode with operands having opposite signs.
• Subtract opcode with operands having the same sign.

• For normalized operands A and B, the basic sequential algorithm for A+B or A-B is:
– Alignment:

• If the exponents of the two operands differ, determine which operand has the
smaller exponent. Right-shift the significand of the smaller operand by an
amount E1 - E2, where E1 is the larger exponent and E2 is the smaller
exponent. Change the exponent of the smaller operand to E1.

– Add/Subtract:
• From the signs and the opcode, determine if this is an effective addition or

subtraction and perform the corresponding operation on the significands.

© 2006 by Gerald E. Sobelman 6

IEEE 754 Floating-Point Class Notes

Basic Seq. Floating-Point Add/Subtract Algorithm - Cont.
– Normalization:

• If we performed an effective addition, then the significand of the result will
be in the range [1, 4). There are two sub-cases:

– If it is in the range [1, 2), then no normalization is required.
– If it is in the range [2, 4), then we must perform a right shift by one bit

position, and increment the value of the exponent by one. Overflow may
occur.

• For an effective subtraction (and assuming that the aligned was subtracted
from the unaligned), then the result significand be in the range (-1, 2):

– If it is in the range [1, 2), then no normalization is required.
– If it is in the range (-1, 1), then we must perform a left shift by one or

more bit positions, and decrement the value of the exponent by the
amount of the shift. Underflow may occur.

– Rounding/Negation:
• Round the result and, if necessary, negate the significand and update the sign.

– Renormalization:
• In rare cases, rounding will produce a result which is no longer normalized. In

such cases, another 1-bit shift must be performed (and the exponent adjusted).

© 2006 by Gerald E. Sobelman 7

IEEE 754 Floating-Point Class Notes

Block Diagram for Basic Seq. Floating-Point Add/Subtract
• The basic sequential algorithm can be mapped onto sign, exponent and significand data

paths, as shown below. (Note that not all required connections are indicated explicitly.)

Unpack

Conditional Complement/Swap

Align

Significand Adder

Normalize

Round/Negate

Renormalize

Subtract Exponents

Exponent Adjust

Exponent Adjust

Pack

Opcode Sign
Unit

© 2006 by Gerald E. Sobelman 8

IEEE 754 Floating-Point Class Notes

Basic Floating-Point Multiply Algorithm
• The three main sub-operations are:

– Multiply the significands
– Add the biased exponents and subtract the bias (since each of the two operand

exponents contains one copy of the bias)
– XOR the signs

• We must also perform normalization and rounding, with corresponding adjustments to
the biased exponent:

– If the significand of each operand is normalized, then each one will be in the range
[1, 2). Therefore, the product significand will be in the range [1, 4):

• If the product is in the range [1, 2), then it is already normalized.
• If the product is in the range [2, 4), then we must shift right by one bit position

and increment the exponent by 1.
• For normalized single precision operands, biased exponent are in the range [1, 254], so

the sum will be in the range [2, 508]. After subtracting the bias, it is in [-125, 381]:
– A final exponent < 1 means that the result is too small to be a normalized number.
– A final exponent > 254 means that the result is too large to be a normalized

number.

© 2006 by Gerald E. Sobelman 9

IEEE 754 Floating-Point Class Notes

Subtraction of Bias: IEEE Single-Precision Format
• The bias subtraction does not require a full-width operation because of its special value.
• Note that -127 = 1 - 128, so instead of subtracting 127, we can add 1 and subtract 128.

– The “add 1” is done as a carry-in to the LSB when the two biased exponents are
initially added, creating an unsigned 9-bit number in [3, 509]:

– The “subtract 128” (where 128 = 27) can be done as follows: Prepend a 0 MSB,
creating a 10-bit two’s complement number, and add -128 as follows:

Note that this only requires a 3-bit addition. The sum will be in [-125, 381], which is
contained within the range of a 10-bit two’s complement number i.e., [-512, 511].

• After any adjustments from normalization and rounding, if x = y = 0 (and the remaining
bits are not all 0s or all 1s) the resulting exponent is proper for a normalized number.
On the other hand, y = 1 indicates underflow, while y = 0 and x = 1 indicates overflow.

a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

+ 1
e8 e7 e6 e5 e4 e3 e2 e1 e0

0 e8 e7 e6 e5 e4 e3 e2 e1 e0

+ 1 1 1 0 0 0 0 0 0 0
y x e7 e6 e5 e4 e3 e2 e1 e0

© 2006 by Gerald E. Sobelman 10

IEEE 754 Floating-Point Class Notes

Subtraction of Bias: IEEE Double-Precision Format
• For normalized numbers in double-precision format, the bias is 1023 and the biased

exponents are 11-bit unsigned quantities in the range [1, 2046].
• Note that -1023 = 1 - 1024, so we can add 1 and subtract 1024:

– The “add 1” can be done as a carry-in to the LSB when the two biased exponents
are initially added (creating an unsigned 12-bit number in [3, 4093]:

– The “subtract 1024” (where 1024= 210) can be done as follows: Prepend a 0 MSB,
creating a 13-bit two’s complement number, and add -1024 as follows:

• This still only requires a 3-bit addition. The sum is in [-1021, 3069], which is within the
range of a 13-bit two’s complement number, i.e. [-4096, 4095]. After any adjustments
from normalization and rounding, if x = y = 0 (and the remaining bits are not all 0s or all
1s), then the resulting exponent is proper for a normalized number. Otherwise, y = 1
indicates underflow, while y = 0 and x = 1 indicates overflow.

a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

+ 1
e11 e10 e9 e8 e7 e6 e5 e4 e3 e2 e1 e0

0 e11 e10 e9 e8 e7 e6 e5 e4 e3 e2 e1 e0

+ 1 1 1 0 0 0 0 0 0 0 0 0 0
y x e10 e9 e8 e7 e6 e5 e4 e3 e2 e1 e0

© 2006 by Gerald E. Sobelman 11

IEEE 754 Floating-Point Class Notes

Basic Structure of the Data Path
• The data path is split into sign, exponent and significand data paths as shown below.

Unpack

Multiply Significands

Normalize

Round

Renormalize

Add Exponents and
Subtract Bias

Exponent Adjust

Exponent Adjust

Pack

XOR
signs

