IEEE 754 Single-Precision Format

- Single-precision numbers contain a total of 32 bits, partitioned as follows:
- 1-bit sign, S
- 8-bit biased exponent, E (with a bias of 127), in the range [0, 255].
- 23-bit fraction, F
- Single-precision normalized numbers have a biased exponent in the range [1, 254].
- The value of a normalized number is: $(-1)^{\mathrm{S}}(1 . \mathrm{F}) 2^{\mathrm{E}-127}$
- The 24-bit quantity 1.F is the significand, and is in the range $[1,2)$.
- Single-precision denormalized numbers have a biased exponent of 0 and a non-zero fraction.
- The value of a denormalized number is: $(-1)^{\mathrm{S}}(0 . \mathrm{F}) 2^{-126}$
- This allows for "graceful underflow" of very small magnitude numbers.
- Not all hardware supports denormalized numbers (since it adds complexity and may be slower), and programmers may disable denormalized numbers to increase speed.
- Single-precision zeros have a biased exponent of 0 and a zero fraction.
- Single-precision infinities have a biased exponent of 255 and a zero fraction.
- Single-precision NANs (non-a-number) have a biased exponent of 255 and a non-zero fraction. (The value of the fraction can be used to pass information about an exception.)
© 2006 by Gerald E. Sobelman

IEEE 754 Double-Precision Format

- Double-precision numbers contain a total of 64 bits, partitioned as follows:
- 1-bit sign, S
- 11-bit biased exponent, E (with a bias of 1023), in the range [0, 2047].
- 52-bit fraction, F
- Double-precision normalized numbers have a biased exponent in the range [1, 2046].
- The value of a normalized number is: $(-1)^{\mathrm{S}}(1 . \mathrm{F}) 2^{\mathrm{E}-1023}$
- The 53-bit quantity 1.F is the significand, and is in the range [1, 2).
- Double-precision denormalized numbers have a biased exponent of 0 and a non-zero fraction.
- The value of a denormalized number is: $(-1)^{\mathrm{S}}(0 . \mathrm{F}) 2^{-1022}$
- Double-precision zeros have a biased exponent of 0 and a zero fraction.
- Double-precision infinities have a biased exponent of 2047 and a zero fraction.
- Double-precision NANs have a biased exponent of 2047 and a non-zero fraction.

IEEE 754 Rounding Modes

- Round to Nearest Even (RNE):
- The default rounding mode that must be supported in any implementation.
- The "nearest even" avoids any rounding bias in the case where the original number is exactly mid-way between two representable numbers.
- Round toward Zero (RZ):
- Simply truncation.
- Round toward Plus Infinity (RPI):
- Round in the direction of positive infinity.
- Round toward Minus Infinity (RMI):
- Round in the direction of negative infinity.
- Note that RPI and RMI are used in interval arithmetic, in which a real number x is represented by two floating-point numbers x_{1} and x_{2} that bracket the number. (x_{1} is the closest representable number that is less than or equal to x and x_{2} is the closest representable number that is greater than or equal to x). Arithmetic operations are then done on intervals. For example to add real numbers x and y using interval arithmetic:

$$
\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]+\left[\mathrm{y}_{1}, \mathrm{y}_{2}\right]=\left[\mathrm{x}_{1}+\mathrm{y}_{1}, \mathrm{x}_{2}+\mathrm{y}_{2}\right]
$$

where $x_{1}+y_{1}$ is rounded toward -infinity and $x_{2}+y_{2}$ is rounded toward +infinity.

Exceptions

- Overflow:
- Occurs if the exponent of the result is larger than the maximum allowable value (e.g., for double-precision, if the exponent is larger than 2046). The correct output then depends on the rounding mode and the sign of the result:
- If RNE: (sign)(infinity)
- If RZ: (sign)(max. representable number)
- If RPI: If sign $=+$, then + infinity; otherwise, -(max. representable number)
- If RMI: If sign $=+$, then (max. representable number); otherwise, -infinity
- Underflow:
- Action depends on whether denormalized numbers are handled or not.
- Divide by 0:
- If the divisor is 0 and the dividend is non-zero and finite, output $=($ sign $)($ infinity $)$
- Invalid Operation:
- "weird" operations, such as (0)(infinity), 0/0, (+infinity) + (-infinity), infinity/infinity, sqrt of a negative number, ... Calls a trap handler or returns NaN .
- Inexact Result:
- Sets a flag if the result is not exact.

Basic Sequential Floating-Point Add/Subtract Algorithm

- Given two signed operands and two possible opcodes (i.e., add and subtract):
- An effective addition will be performed in the following situations:
- Add opcode with operands having the same sign.
- Subtract opcode with operands having opposite signs.
- An effective subtraction will be performed in the following situations:
- Add opcode with operands having opposite signs.
- Subtract opcode with operands having the same sign.
- For normalized operands A and B , the basic sequential algorithm for $\mathrm{A}+\mathrm{B}$ or $\mathrm{A}-\mathrm{B}$ is:
- Alignment:
- If the exponents of the two operands differ, determine which operand has the smaller exponent. Right-shift the significand of the smaller operand by an amount $E_{1}-E_{2}$, where E_{1} is the larger exponent and E_{2} is the smaller exponent. Change the exponent of the smaller operand to E_{1}.
- Add/Subtract:
- From the signs and the opcode, determine if this is an effective addition or subtraction and perform the corresponding operation on the significands.

Basic Seq. Floating-Point Add/Subtract Algorithm - Cont.

- Normalization:
- If we performed an effective addition, then the significand of the result will be in the range $[1,4)$. There are two sub-cases:
- If it is in the range $[1,2)$, then no normalization is required.
- If it is in the range $[2,4)$, then we must perform a right shift by one bit position, and increment the value of the exponent by one. Overflow may occur.
- For an effective subtraction (and assuming that the aligned was subtracted from the unaligned), then the result significand be in the range $(-1,2)$:
- If it is in the range [1,2), then no normalization is required.
- If it is in the range $(-1,1)$, then we must perform a left shift by one or more bit positions, and decrement the value of the exponent by the amount of the shift. Underflow may occur.
- Rounding/Negation:
- Round the result and, if necessary, negate the significand and update the sign.
- Renormalization:
- In rare cases, rounding will produce a result which is no longer normalized. In such cases, another 1-bit shift must be performed (and the exponent adjusted).
© 2006 by Gerald E. Sobelman

Block Diagram for Basic Seq. Floating-Point Add/Subtract

- The basic sequential algorithm can be mapped onto sign, exponent and significand data paths, as shown below. (Note that not all required connections are indicated explicitly.)

© 2006 by Gerald E. Sobelman

Basic Floating-Point Multiply Algorithm

- The three main sub-operations are:
- Multiply the significands
- Add the biased exponents and subtract the bias (since each of the two operand exponents contains one copy of the bias)
- XOR the signs
- We must also perform normalization and rounding, with corresponding adjustments to the biased exponent:
- If the significand of each operand is normalized, then each one will be in the range $[1,2)$. Therefore, the product significand will be in the range $[1,4)$:
- If the product is in the range $[1,2)$, then it is already normalized.
- If the product is in the range $[2,4)$, then we must shift right by one bit position and increment the exponent by 1.
- For normalized single precision operands, biased exponent are in the range [1, 254], so the sum will be in the range [2, 508]. After subtracting the bias, it is in [-125, 381]:
- A final exponent < 1 means that the result is too small to be a normalized number.
- A final exponent > 254 means that the result is too large to be a normalized number.

Subtraction of Bias: IEEE Single-Precision Format

- The bias subtraction does not require a full-width operation because of its special value.
- Note that $-127=1-128$, so instead of subtracting 127 , we can add 1 and subtract 128.
- The "add 1" is done as a carry-in to the LSB when the two biased exponents are initially added, creating an unsigned 9-bit number in [3, 509]:

	a_{7} b_{7}	a_{6}	a_{5}	a_{4}	a_{3}	a_{2}	a_{1}	a_{0}
+				b_{4}	$\mathrm{~b}_{3}$	$\mathrm{~b}_{2}$	$\mathrm{~b}_{1}$	b_{0} 1
e_{8}	e_{7}	e_{6}	e_{5}	e_{4}	e_{3}	e_{2}	e_{1}	e_{0}

- The "subtract 128 " (where $128=2^{7}$) can be done as follows: Prepend a 0 MSB , creating a 10-bit two's complement number, and add -128 as follows:

	0	e_{8}	e_{7}	e_{6}	e_{5}	e_{4}	e_{3}	e_{2}	e_{1}
+	1	1	1	0	0	0	0	0	0
0	0								
	y	x	e_{7}	e_{6}	e_{5}	e_{4}	e_{3}	e_{2}	e_{1}
e_{0}									

Note that this only requires a 3-bit addition. The sum will be in [-125, 381], which is contained within the range of a 10-bit two's complement number i.e., $[-512,511]$.

- After any adjustments from normalization and rounding, if $x=y=0$ (and the remaining bits are not all 0 s or all 1 s) the resulting exponent is proper for a normalized number. On the other hand, $\mathrm{y}=1$ indicates underflow, while $\mathrm{y}=0$ and $\mathrm{x}=1$ indicates overflow.

Subtraction of Bias: IEEE Double-Precision Format

- For normalized numbers in double-precision format, the bias is 1023 and the biased exponents are 11-bit unsigned quantities in the range [1, 2046].
- Note that $-1023=1-1024$, so we can add 1 and subtract 1024:
- The "add 1 " can be done as a carry-in to the LSB when the two biased exponents are initially added (creating an unsigned 12-bit number in [3, 4093]:

	a_{10}	a_{9}	a_{8}	a_{7}	a_{6}	a_{5}	a_{4}	a_{3}	a_{2}	a_{1}	a_{0}
b_{10}	$\mathrm{~b}_{9}$	$\mathrm{~b}_{8}$	$\mathrm{~b}_{7}$	$\mathrm{~b}_{6}$	$\mathrm{~b}_{5}$	$\mathrm{~b}_{4}$	$\mathrm{~b}_{3}$	$\mathrm{~b}_{2}$	$\mathrm{~b}_{1}$	b_{0}	
+											1
e_{11}	e_{10}	e_{9}	e_{8}	e_{7}	e_{6}	e_{5}	e_{4}	e_{3}	e_{2}	e_{1}	e_{0}

- The "subtract 1024" (where $1024=2^{10}$) can be done as follows: Prepend a 0 MSB , creating a 13-bit two's complement number, and add -1024 as follows:

	0	e_{11}	e_{10}	e_{9}	e_{8}	e_{7}	e_{6}	e_{5}	e_{4}	e_{3}	e_{2}	e_{1}
+	1	1	1	0	0	0	0	0	0	0	0	0
+	0											
	y	x	$\overline{\mathrm{e}_{10}}$	e_{9}	e_{8}	e_{7}	e_{6}	e_{5}	e_{4}	e_{3}	e_{2}	e_{1}
e_{0}												

- This still only requires a 3-bit addition. The sum is in [-1021, 3069], which is within the range of a 13-bit two's complement number, i.e. [-4096, 4095]. After any adjustments from normalization and rounding, if $x=y=0$ (and the remaining bits are not all 0 s or all 1 s), then the resulting exponent is proper for a normalized number. Otherwise, $\mathrm{y}=1$ indicates underflow, while $y=0$ and $x=1$ indicates overflow.

Basic Structure of the Data Path

- The data path is split into sign, exponent and significand data paths as shown below.

© 2006 by Gerald E. Sobelman

